

सार्वजनिक हिताय | सार्वजनिक शुद्धाय
WELFARE FOR ALL | HAPPINESS OF ALL

AI for ALL

Catalysing Jobs, Growth, and Opportunity

February 2026

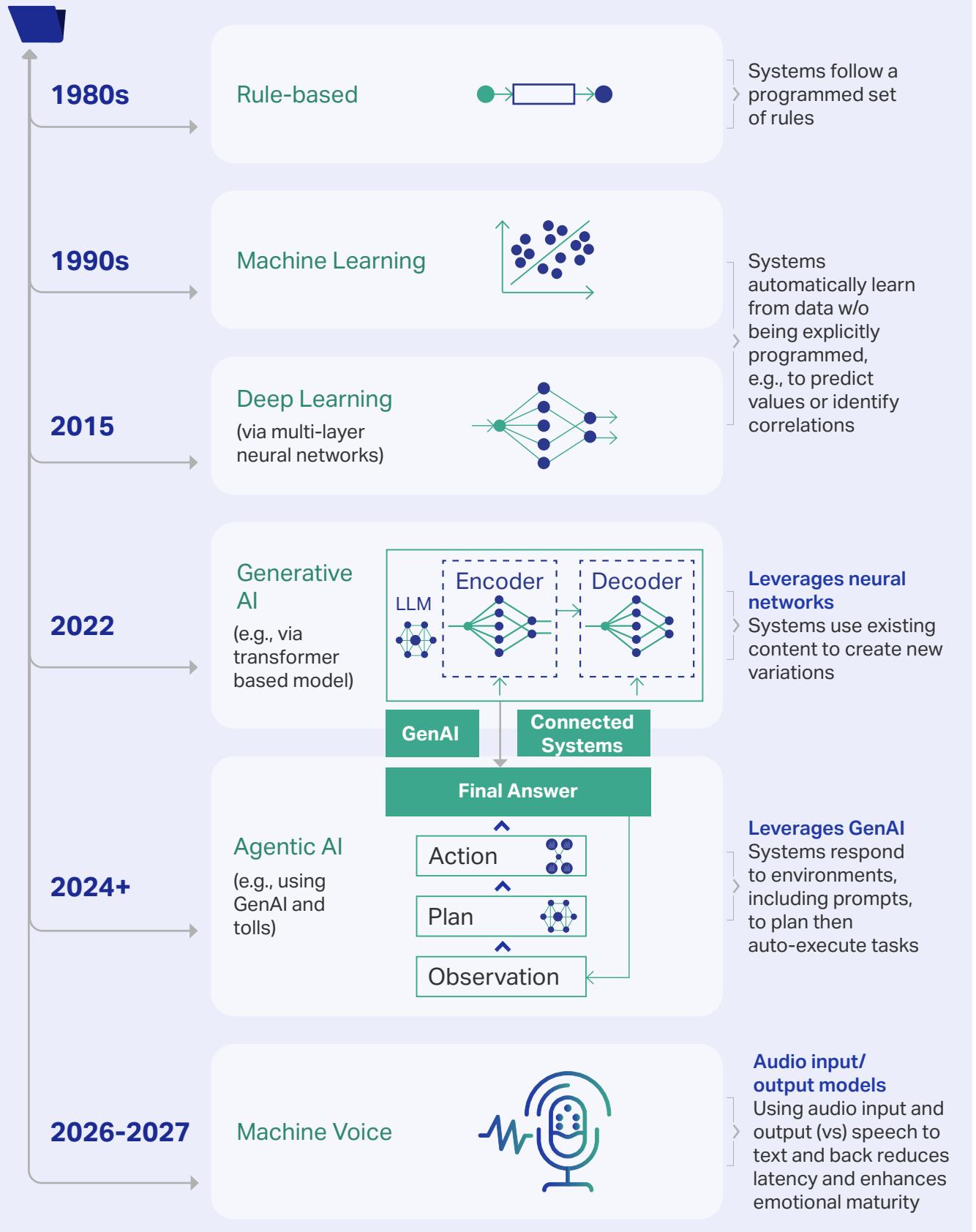
Methodology

This report has been developed through a structured, consultative process combining primary stakeholder engagement with rigorous secondary research. A series of closed-door, sector-specific roundtables were convened across agriculture, education, healthcare, manufacturing, and financial services. These discussions brought together senior policymakers, industry leaders, startup founders, domain practitioners, academics, and sector veterans with deep operating experience. The roundtables aimed to move beyond technology abstraction and surface execution-level insights by identifying binding constraints, validating priority AI use cases, and assessing real-world feasibility under Indian operating conditions.

Prosus curated and facilitated these discussions, leveraging its ecosystem relationships across technology, industry, and entrepreneurship to ensure diverse and practitioner-led participation. Insights emerging from the roundtables were synthesised and triangulated with secondary research, including sector studies and public data. Boston Consulting Group (BCG), in collaboration with Prosus, led the analytical synthesis and drafting of the report, integrating practitioner perspectives with evidence-based analysis. The resulting output is this report that reflects both on-the-ground realities and global best practices, with a clear focus on scalable, outcome-oriented AI adoption in India.

Introduction

India's development narrative is about to enter a pivotal stage. India is predicted to contribute almost 20% of the incremental global economic growth over the next 15 years, making it the primary force behind global expansion. The national goal of *Viksit Bharat 2047*, which aims to transform India into a developed economy through consistent productivity growth, inclusion, and institutional strengthening, serves as the foundation for this trajectory. Improving the quality, effectiveness, and resilience of fundamental economic and social systems will be necessary to realize this vision, going beyond scale alone.

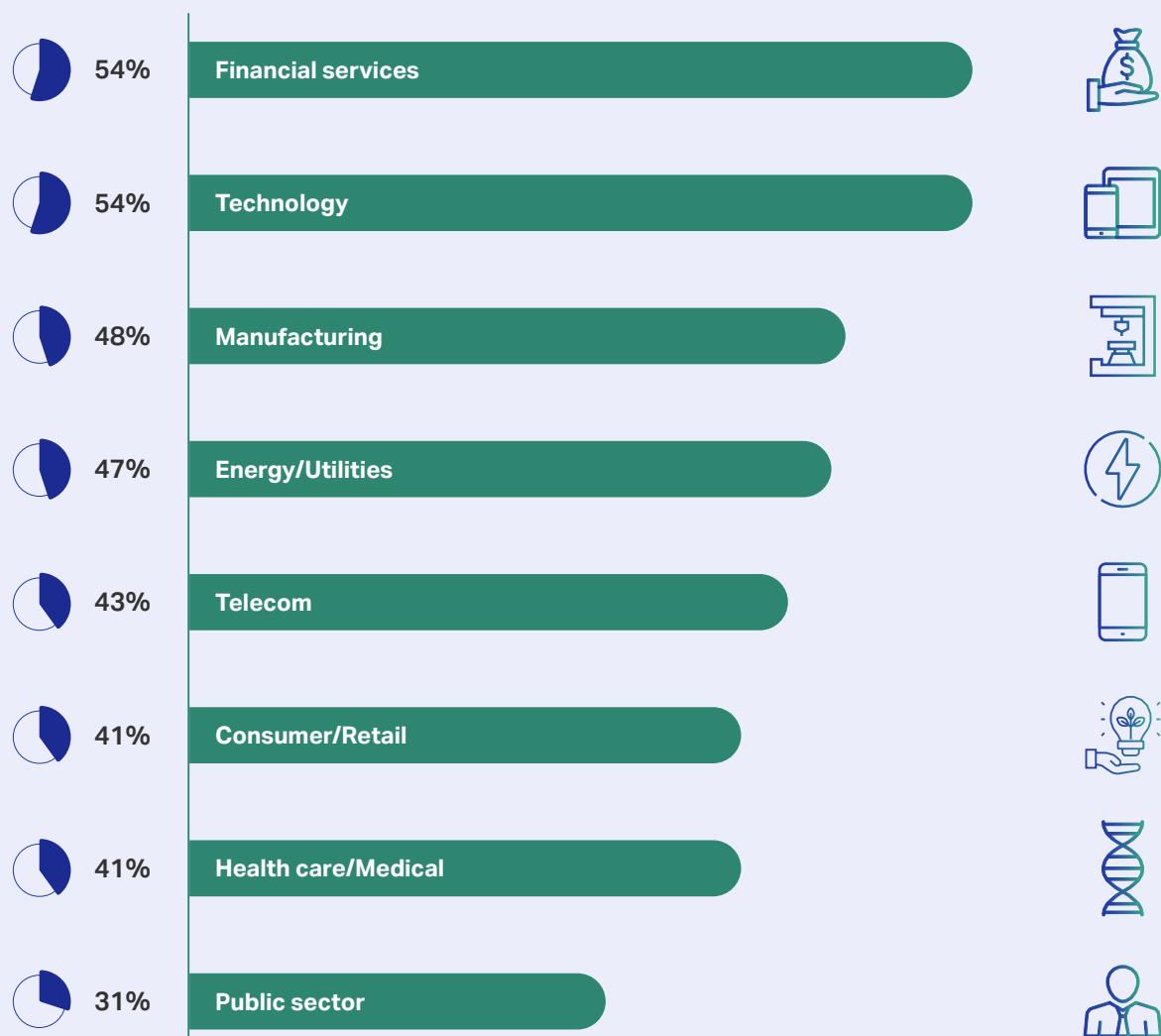

This next stage of development will be largely made possible by artificial intelligence. With roughly 16 percent of the world's AI talent residing there, one of the biggest and fastest-growing AI user bases, and a rapidly developing reputation as a global center for applied AI use cases rather than just model development, India comes

into the AI era with unique advantages. India is increasingly ranked as one of the top AI-ready economies in international evaluations, including those conducted by the IMF. With the establishment of the IndiaAI Mission and the hosting of the AI Impact Summit 2026, India is positioned to deploy AI extensively across real-world systems in addition to producing AI talent.

Even though AI has experienced rapid generational shifts, its economic impact has not yet fully materialized on a global scale. Machine learning, deep learning, and most recently, generative AI driven by transformer-based models, replaced what started out as inflexible, rule-based systems in the 1980s. A completely new paradigm is emerging today with agentic AI: systems that can sense their surroundings, make plans on their own, and carry out tasks through networked systems without continual human guidance. AI is now an active participant in workflows rather than just a passive tool.

The AI landscape is rapidly evolving, with Agentic AI as the latest frontier & Machine Voice will be the next

Year when tech starts becoming mainstream



Most organisations remain stuck in what is commonly described as "PoC hell", characterised by fragmented pilots, limited integration into core workflows, and weak translation into measurable outcomes. Evidence from global research, including BCG's AI Radar, shows that AI-driven value creation is highly uneven across sectors and geographies.

Financial services and tech are leading the pack on workflow redesign

A small set of leaders, particularly in financial services, manufacturing, and parts of healthcare, are pulling ahead, while many others struggle to scale adoption beyond experimentation. The implication is clear: AI advantage is not determined by access to technology, but by the ability to execute at scale.

Share of respondents who report their company is doing workflow redesign (Reshape) among industries

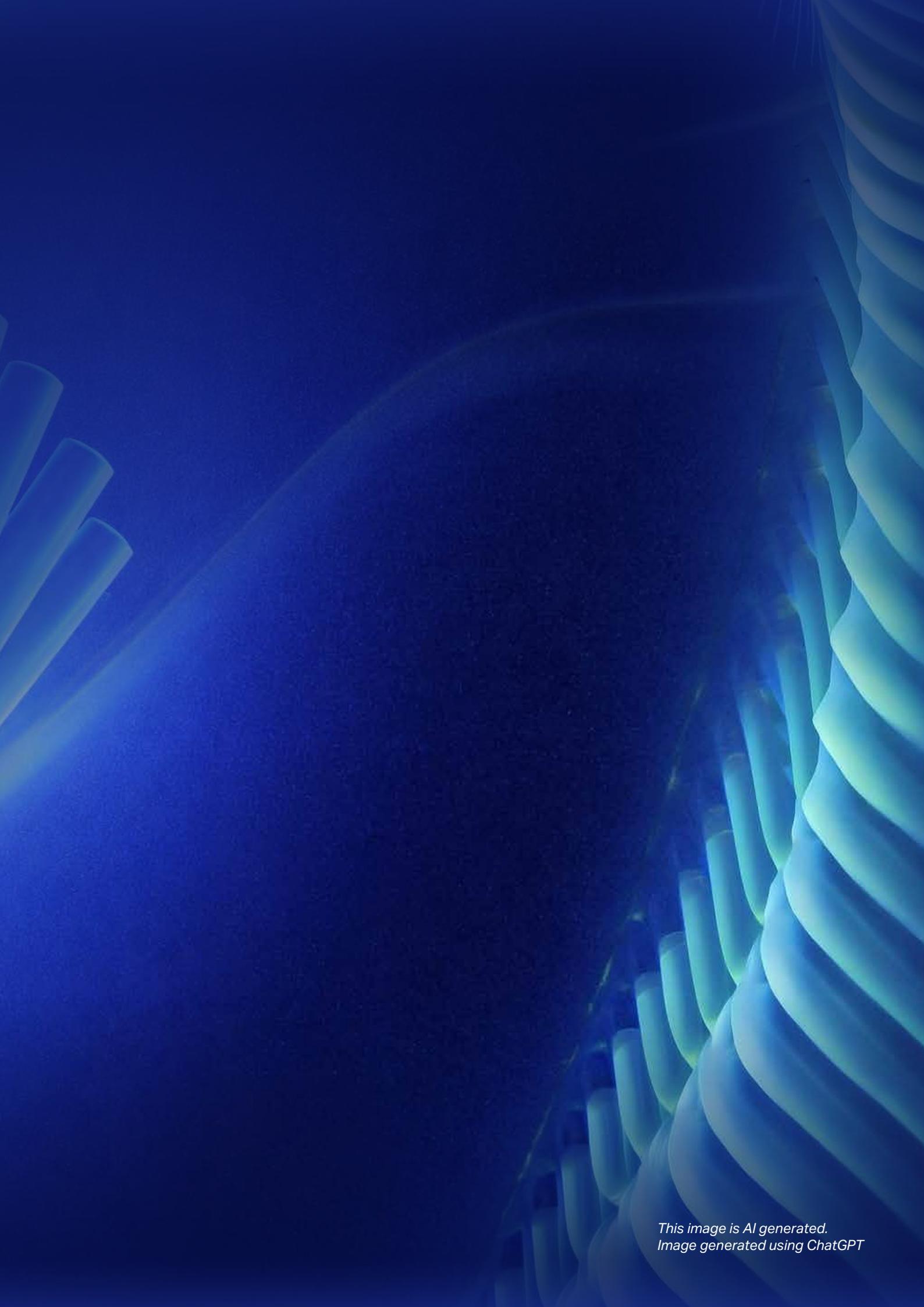
Adoption trends by sector support this finding. While sectors like agriculture, education, and public health continue to be under-integrated with AI despite its enormous potential, industries like financial services and advanced manufacturing have made faster progress in integrating AI into decision-making, risk assessment, quality control, and operations. Disparities in data readiness, institutional capacity, workforce readiness, and problem definition clarity are reflected in this uneven adoption. If AI is to significantly support India's growth and inclusion goals, these gaps must be filled.

This report series responds to that challenge. It represents the outcome of a structured set of sector-specific roundtables across agriculture, education, healthcare, manufacturing, and financial services, involving policymakers, industry leaders, practitioners, startups, researchers, and civil society representatives. The discussions focused deliberately on execution: identifying binding structural constraints, validating high-impact AI use cases, and assessing what must change across policy, institutions, data, and skills for AI to scale responsibly in the Indian context. These insights are in line with current government programs and digital public infrastructure, and they have been combined with secondary research.

Across the five sectors examined, a common pattern emerges. India has achieved scale, but outcomes remain uneven. Fragmented data, workforce constraints, limited feedback loops, and institutionally weak decision-support systems continue to constrain productivity and service quality. AI introduces fundamentally new capabilities to address these challenges. Doctors in resource-constrained settings can access AI-assisted diagnostics and triage; farmers can receive hyperlocal, vernacular advisory;

teachers can personalise instruction in large or single-teacher classrooms; MSMEs can access credit through cash-flow-based underwriting rather than collateral. These are not incremental improvements; they expand the operational feasibility frontier at scale.

However, discipline is necessary to realize this potential. Research consistently demonstrates that 70-20-10 principle: roughly 10% of effort goes toward algorithms, 20% goes toward data and technology infrastructure, and 70% goes toward people, processes, governance, and cultural change, which is the key to successful AI adoption. Therefore, institutional preparedness, workflow redesign, accountability, and human capacity building are more important for AI success than model sophistication. India has a rare chance to learn this lesson early on and focus its AI strategy on systemic change rather than just technology implementation.


Accordingly, each sector is structured into five integrated sections. The first sets out the sector context and structural challenges. The second identifies priority opportunity areas and the architectural principles required for AI to work at scale. The third details practical, high-impact AI use cases grounded in real deployments. The fourth examines employment and workforce implications, including new role archetypes created by AI adoption. The final section outlines the system-level shifts and action agenda required to move from pilots to scale.

Taken together, this report series seeks to move the conversation from AI potential to AI execution, positioning artificial intelligence as a foundational capability for inclusive growth, improved service delivery, and sustained national competitiveness in India's journey toward *Viksit Bharat* 2047.

Amrit Arogya

AI in Indian Healthcare

The background of the image is a dark blue color. On the right side, there is a prominent, wavy, vertical pattern that resembles the folds of a fabric or the layers of a planet's atmosphere. The pattern is composed of several curved, translucent blue shapes that overlap each other, creating a sense of depth and motion. The left side of the image is mostly solid dark blue, with a few faint, diagonal lines of light blue and white that suggest a distant horizon or a reflection. The overall effect is one of a serene, futuristic, or otherworldly landscape.

*This image is AI generated.
Image generated using ChatGPT*

Executive Summary

India's health system is undergoing major changes. Over the past 2 decades, the country has seen improvements in life expectancy, maternal and child health, disease control, and the rollout of large-scale programs. Digital public infrastructure has made care delivery more effective, supporting platforms like e-Sanjeevani and laying the groundwork for the Ayushman Bharat Digital Mission. These advances show that India can manage large-scale medical care systems.

However, structural gaps remain. Access to prompt care remains uneven, largely due to the unequal distribution of doctors and specialists, with the most serious shortages occurring outside major urban areas.

Diagnostic capacity inside regions beyond metropolitan areas is limited, causing delays and inconsistent quality of care. Despite advancements in public coverage, out-of-pocket expenses remain high, driven not only by service prices but also by repeat testing, fragmented care experiences, travel costs, and lost wages. At the same time, the disease burden has moved towards chronic and lifestyle conditions that require ongoing, coordinated care instead of occasional treatments.

These challenges are further compounded by fragmented data systems and limited capacity to generate actionable insights. Much of the health data is still kept separate by public programs, private providers, and facilities, and a lot of it is still on paper or not organised. Frontline staff and clinicians face heavy workloads and extensive paperwork,

with uneven support for decision-making, making it hard to maintain consistent quality across the system.

Artificial Intelligence now offers fundamentally new levers to address these constraints. Used as a force multiplier rather than a replacement for clinicians or infrastructure, AI can help India leapfrog structural limitations. The report identifies how AI can reinforce the health system across four critical dimensions:

- ◆ **Maximising workforce productivity or access at scale** via AI-driven triage, assisted telemedicine, documentation assistance, multilingual voice tools, and decision tools for frontline staff to ensure that scarce clinical skills are deployed on those most at risk.
- ◆ **Improving accuracy, consistency, and quality of care** through the standardisation of diagnostic tools and documentation of process implementation, reducing variability driven by location, workload, and individual experience.
- ◆ **Reducing avoidable financial burden on households and the system** by cutting repeat tests, improving care-pathway efficiency, lowering travel and wage-loss costs, and curbing fraud and leakage in insurance and public programs.
- ◆ **Generation of actionable intelligence for the administrators**, through the translation of fragmented data sets into district-level risk signals, early warning systems, and operational dashboards to accomplish precise planning.

AI adoption also creates complementary employment opportunities across healthcare technology operations, care coordination, analytics, and governance, supporting, rather than displacing, human roles.

Realising this potential may require system-level shifts. Policymakers could consider a unified, risk-tiered AI-in-health regulatory framework anchored in patient safety and human oversight; strengthened data governance aligned with the DPDP Act; accelerated ABDM adoption; shared national utilities for benchmarking, anonymisation, and assurance; and sustained skilling of clinical and non-clinical cadres. AI in healthcare is thereby placed not as a

strategic goal, but as a practical, near-term enabler that can extend access, improve quality, reduce financial stress, and strengthen governance at population scale, while remaining firmly anchored in ethics, safety, and accountability.

Amrit Krishi

AI in Indian Agriculture

*This image is AI generated.
Image generated using ChatGPT*

Executive Summary

Over the past several decades, India's agricultural system has undergone a massive transformation. Moving past the history of chronic food scarcity, the country has risen to become one of the world's largest agri-food producers. Today, it generates over 332 million tonnes of food grains and employs nearly 46% of the national workforce. This shift was driven by government investments and the Green Revolution, which supported the expansion of irrigation, varietal improvement, and increased mechanisation. These advancements led to the high production levels we see today, serving as the backbone for India's national food security and rural livelihoods.

However, several structural constraints now prevent India's agricultural system from sustaining improvements in productivity, enhancing farmer incomes, and building environmental resilience. Yield gaps are significant across major key crops. For example, India's wheat yields lag considerably behind global standards. More than 86% of farmers are smallholders, cultivating an average of fewer than two hectares. This makes it difficult for individual farmers to adopt and invest in new technologies, thereby increasing dependence on shared models and collective services. Meanwhile, pressure on natural resources is intensifying - agriculture accounts for almost 90% of freshwater withdrawals, over half of farmland remains rainfed, and soil health is deteriorating due to widespread nutrient imbalances and micronutrient deficiencies. These developments increase cultivation costs and erode long-term productivity.

Market inefficiencies further depress farm incomes. Post-harvest losses of 15-20% translate into billions of dollars of foregone

value annually. In contrast to more structured value chains like dairy, where 80-85% of the final consumer price is captured by farmers, in agriculture, it is only around 30-40%. Farmers are reduced to price takers due to fragmented market access, inconsistent grading, limited aggregation, and poor price discovery. Rising temperatures, fluctuating rainfall patterns, and an increase in the frequency of extreme wet/dry events will all contribute to increased yield and income volatility.

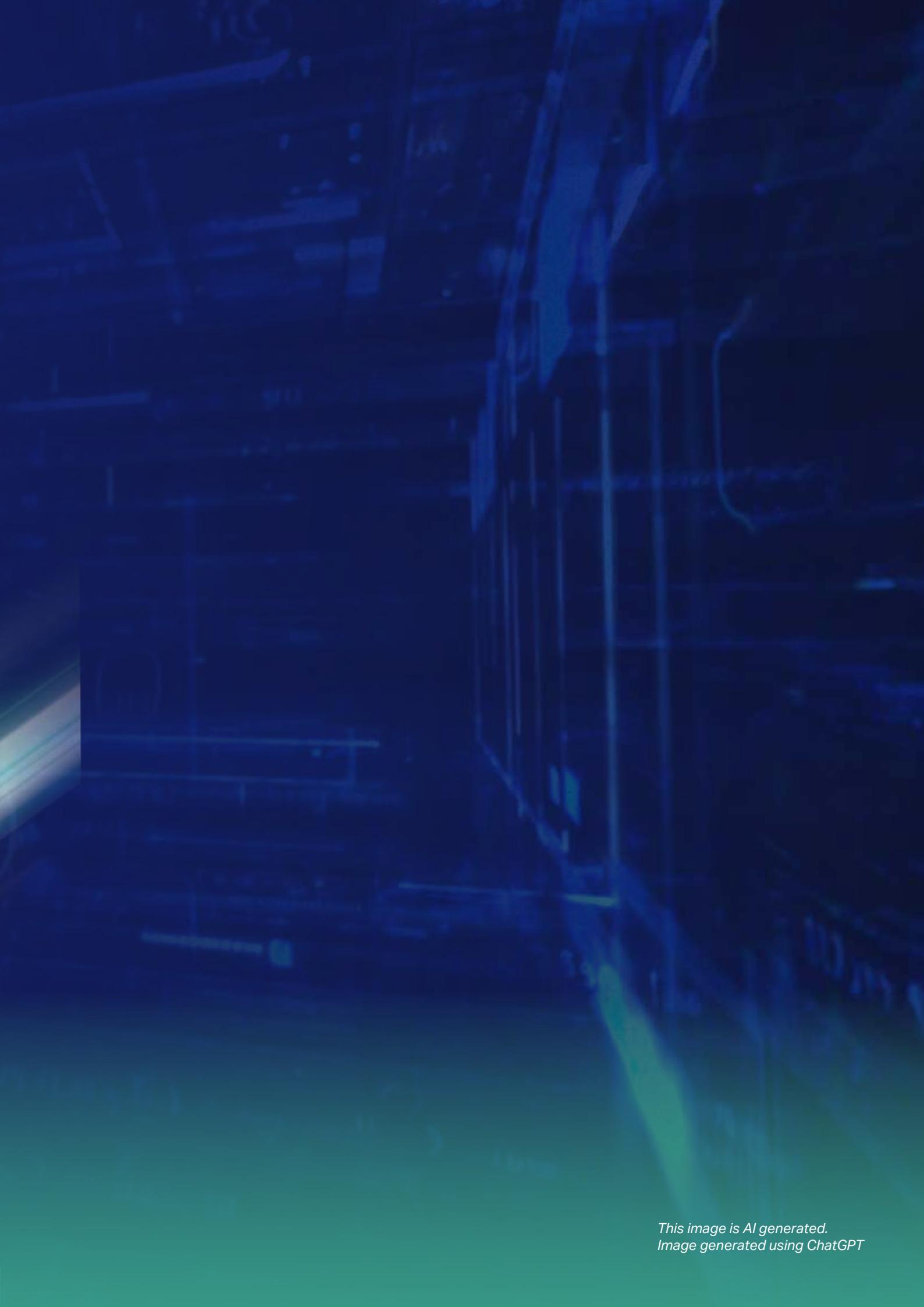
India's agricultural model is thus at a critical juncture. The paradigm of producing output, which has successfully expanded the overall volume of food produced, must now transition to a system that emphasises precision, resource efficiency, climate resilience, and market linkages. Artificial intelligence, when combined with digital public infrastructure and advances in biological and mechanical innovation, offers a strategic opportunity to enable this transition at scale, provided solutions are affordable, locally operable, and verifiable under smallholder conditions.

The report identifies ten opportunity areas spanning input optimisation, demand-aligned crop planning, scale efficiencies for smallholders, cultivator identification, data integration, last-mile advisory, market access, climate resilience, crop protection, and risk management. Across these dimensions, AI can serve as a force multiplier by improving decision quality, reducing waste, and strengthening institutional linkages.

Six application domains stand out. AI-enabled crop planning and demand forecasting can align production with evolving consumption, nutrition, and trade

patterns, reducing cycles of surplus and shortage. Precision agriculture tools can optimise water, fertiliser, and chemical use at the plot level, lowering costs while restoring soil and groundwater health. Predictive diagnostics across crops and livestock can enable early intervention, reducing losses and pesticide overuse. AI-driven grading, market intelligence, and digital linkages can improve transparency and farmer value realisation. In finance and insurance, AI can improve cultivator identification, credit assessment, and risk coverage, accelerating payouts and expanding formal inclusion. Finally, generative AI can radically scale agricultural extension by translating research into personalised, multilingual guidance delivered on demand.

Increasing AI and technology penetration in agriculture will open up many meaningful employment opportunities. Emerging roles include drone and precision-machinery


operators, AI-enabled farm advisory consultants, quality-assaying and grading professionals, and rural micro-entrepreneurs delivering machine-as-a-service and data-led extension.

To realise this potential, we must look beyond discrete pilot projects. The government's role lies in stewarding digital public infrastructure, data governance, standards, and certification. Delivering services on these shared rails will be the primary focus of markets, agribusinesses, startups, and farmer institutions. When used effectively, AI can help Indian agriculture move away from input-intensive growth toward precision, resilience, and higher farmer incomes. This will improve food security, restore the base of natural resources, and create new, large-scale rural employment opportunities.

Amrit Vidya

AI in Indian Education

*This image is AI generated.
Image generated using ChatGPT*

Executive Summary

With more than 14 lakh schools, over 24 crore students, and over one crore teachers spread across a very varied landscape of boards, languages, and institutional contexts, India runs the largest education system in the world. The nation has successfully addressed a fundamental national priority by achieving a historic expansion of access and enrolment over the past few decades. The digital rails needed for population-scale delivery have been further established through digital public investments such as DIKSHA and NDEAR, as well as extensive connectivity initiatives. However, learning outcomes continue to be a significant challenge despite this scale.

The ASER evidence highlights some foundational gaps. COVID-related disruptions also exacerbated these, leaving a majority of learners 2–3 grade levels behind in foundational literacy and numeracy. These early gaps tend to compound over time, leading to disengagement, higher dropout rates, and poor preparedness for secondary education, higher education, and the workforce. The National Education Policy (NEP) 2020 squarely recognised this challenge and hence called for a shift from subject mastery to foundational mastery, reasoning, and competency-based learning. The government is also making substantial investments to strengthen digital infrastructure in school education, reflecting recognition of these gaps. This push is being reinforced by national programs like BharatNet, which is expanding rural broadband as a backbone for last-mile school connectivity, and Samagra Shiksha, which provides the implementation vehicle for ICT-enabled schooling through funding for smart classrooms, digital labs, and teacher capacity-building.

India has achieved scale in education, but quality and equity remain uneven across teachers, students, parents, and administrators. Teachers balance instructional and administrative demands, many students lack tailored academic support, and parents have limited visibility into learning progress. Despite growing data availability, administrators still face challenges in converting insights into timely, targeted interventions.

Artificial intelligence currently offers a unique opportunity to break these boundaries when implemented as an "enabling layer" rather than as a standalone solution. The report treats artificial intelligence as a force multiplier, increasing human potential, the quality of learning, and the quality of system governance, not as a tool to automate past inefficiencies. A high-impact education technology architecture will need to be built around six priorities: unlocking teacher effectiveness, bridging the digital divide, promoting reasoning skills over memorisation, facilitating multilingual and transparent parental engagement, powering institutional intelligence, and ensuring the safe and human-centric use of technology.

AI can deliver tangible impact across the education value chain. For students, it enables foundational diagnostics, personalised remediation, Socratic tutoring that builds reasoning rather than answer dependence, concept visualisation, and accessibility for learners with disabilities. For teachers, it can automate grading, reporting, and lesson preparation, freeing time for mentorship and differentiated instruction. For parents, AI communication in local languages improves engagement, supports

digital well-being guidance, and simplifies access to scholarships. For administrators, predictive analytics can flag dropout risks, optimise resource allocation, and turn fragmented data into actionable intelligence. At the last mile, voice-based AI models can extend quality learning to low-connectivity and underserved settings.

AI adoption also opens new employment pathways in education, spanning teacher support roles, assessment and content services, accessibility support, training and onboarding, and digital well-being counselling. When paired with appropriate training and governance, these roles strengthen both learning systems and employment outcomes.

Realising this potential requires system-level shifts. Governments could set a clear objective function for AI in education centered on learning outcomes, teacher enablement, and student well-being while

strengthening digital public infrastructure, reforming assessment towards competency-based models, and establishing safety and usage standards. Prioritising inclusive, teacher-first, and reasoning-led solutions would be advantageous for EdTech providers. Administrators could refocus classroom instruction to emphasise lifelong learning, agency, and mastery.

India has made education more accessible than it has ever been. Delivering high-quality learning, reasoning, and adaptability at the same scale presents the next opportunity. When used properly and methodically, AI can hasten this shift and enable transformation at scale.

Amrit Udyog

AI in Indian Manufacturing

*This image is AI generated.
Image generated using ChatGPT*

Executive Summary

Manufacturing is an important part of India's economy. It contributes about 16-17% to the country's GDP, provides jobs for over 110 million people, and supports goals like self-reliance, export growth, and job creation. Over the past decade, programs such as 'Make in India,' 'Atmanirbhar Bharat,' and 'Production-Linked Incentive' have helped the sector grow. India is now the world's second-largest steel producer, and new industrial hubs are being developed in many states. The goal is to increase manufacturing's share of GDP to 25% by 2047, which will require steady progress over the next twenty years.

This shift entails addressing the existing structural hurdles, especially in the MSME segment, which comprises more than 70 million enterprises and accounts for almost 45% of exports. The Indian labour productivity in the manufacturing sector is about one-fourth of the overall global average. Moreover, most of the plants in the MSME segment work at less than 60% Overall Equipment Effectiveness.

Quality outcomes are similarly constrained. Heavy reliance on manual inspection and operator skill leads to inconsistent defect detection, increased rework, and limited knowledge sharing. The absence of common data standards and interoperable systems prevents improvements from spreading across shifts, plants, and suppliers. Technology adoption is further hindered by skill gaps, employee resistance, and uncertainty about return on investment. Limited access to formal credit compounds these challenges. With only about 20% of micro and small businesses able to secure

bank financing, a significant funding gap remains, making modernisation difficult.

These challenges are often interconnected and can reinforce one another. When capital is scarce, it is harder to adopt new technology, leading to lower productivity and quality. If quality is inconsistent, it becomes difficult to reach organised buyers and export markets. This reduces revenue and limits reinvestment. Small steps toward digitisation or one-off pilot projects have not been enough to solve these problems.

Recent advances in artificial intelligence provide practical solutions to address these challenges at scale. By targeting real issues and considering the entire system, AI enhances existing lean practices instead of replacing them. IoT devices and sensors deliver real-time updates on machines and processes. AI supports predictive maintenance, automated quality checks, optimised scheduling, and data-driven decision-making. Integrating these tools into daily operations enables MSMEs to shift from individual reliance to consistent, repeatable outcomes.

For that, the report highlights that, to realise this potential, AI adoption must be considered a system-wide change, not a technology deployment. Four principles are critical: designing for scalability from the outset; treating industrial clusters and value chains, not individual firms, as the unit of adoption; prioritising outcomes over technology sophistication; and strengthening applied industry-academia collaboration focused on shopfloor problems.

The report outlines complementary roles for startups, MSMEs, anchor corporates, and the government. Startups must move from pilots to MSME-ready, outcome-linked solutions. MSMEs should adopt problem-first, cluster-based approaches. Anchor corporates can enable standardisation, traceability, and capability building across supplier ecosystems. The government can act as an ecosystem architect, providing shared infrastructure and trusted digital frameworks.

AI in manufacturing could potentially act as a near-term lever to convert fragmented growth into scaled competitiveness, strengthening productivity, quality, resilience, and job creation across India's manufacturing base.

Amrit Niti

AI in Indian Financial Services

The background of the image is a dark, abstract composition. It features a vertical gradient, transitioning from a deep blue on the left to a vibrant green on the right. The texture appears slightly grainy and out of focus, giving it a painterly or dreamlike quality. There are no discernible objects or text in this background.

*This image is AI generated.
Image generated using ChatGPT*

Executive Summary

Financial services are currently undergoing a major structural transformation. Over the last decade, India has built an exceptionally sophisticated digital financial system. The number of people with bank accounts has increased from 35% in 2011 to almost 90% in 2024. UPI enables almost 228 billion transactions each year. Fintech has acted as a force multiplier on this foundation. India is now the world's third-largest fintech ecosystem and is projected to reach \$190 billion in revenues by 2030. More than half of new-to-credit customers are served by fintechs, and over 70% of fintech-led lending originates from Tier-2 cities and beyond. Across payments, credit, investments, and insurance, fintech innovation has pushed formal finance into segments long considered uneconomical.

Despite this progress, substantial headroom remains. India's MSME sector, comprising over 70 million enterprises that employ more than 110 million people, faces a credit gap of ~Rs. 30 lakh crore, concentrated largely among micro and small enterprises. On the retail side, secured lending, such as mortgages, remains significantly underpenetrated relative to peer economies, while a large share of individuals still lacks access to formal credit. Unsecured lending has expanded rapidly, but concerns about underwriting quality and default cycles underscore the need for better risk assessment rather than indiscriminate expansion.

Insurance penetration faces similar constraints. At 3.7% of GDP, roughly half the global average, India remains significantly underinsured. While public and private schemes now cover approximately 550

million individuals for health risks, nearly 700 million people still lack meaningful protection against health shocks, income loss, and lifecycle risks that can reverse years of economic progress.

The RBI's National Strategy for Financial Inclusion 2025-30 explicitly marks a shift from access to quality, from account ownership to active use of credit, insurance, and investment products. The foundational rails are now in place; the challenge is to deploy them intelligently.

Artificial intelligence is, therefore, the critical next lever. AI enables financial institutions to convert India's digital exhaust (payment data), consented financial records, and behavioural signals into better credit decisions, personalised products, fraud resilience, and scalable risk management. It enables small-ticket, high-volume segments to be served sustainably without resorting to exclusionary practices. A key shift is the emergence of agentic AI systems that can autonomously execute multi-step financial workflows within defined guardrails. In financial services, Agentic AI can now originate loans end-to-end, continuously monitor portfolios, trigger proactive interventions, and resolve routine service requests monitored with "human in the loop" systems.

As AI adoption deepens, it is expected to generate new roles spanning building, governing, and using of AI systems. Beyond core institutions, employment opportunities will also expand across fraud intelligence, data operations, vernacular AI services, and embedded finance infrastructure.

A stack of US dollar bills is shown in the background, slightly blurred, creating a textured blue-green background. The bills are arranged in a somewhat haphazard stack, with some bills visible at the top and others partially hidden below.

Realising this employment and innovation potential, however, requires moving beyond isolated pilots toward enterprise-wide AI strategies. Instead of using isolated pilots, enterprise-wide AI strategies are needed to recognise this shift. To manage vendor and geopolitical risks, institutions need to design modular, sovereign technology stacks, develop reusable horizontal capabilities, and incorporate responsible AI governance from the start. The adoption of common standards and the exchange of fraud intelligence must be made possible by industry bodies. To enable AI at scale, regulators can fortify domestic infrastructure and define data-sharing guidelines.

AI won't just increase the efficiency of financial services. It will redefine who can be served, at what cost, and with what precision. Those organisations that have integrated AI into their core operations and treat it as a strategic infrastructure component will have a sustainable competitive advantage over those that take an incremental approach to automating their processes. Digital Finance has begun its evolution into Intelligent Finance.

About the Authors

Chair

R. Chandrashekhar

Former Secretary, Electronics, IT and Telecom, GoI
Former President, NASSCOM
Chairman, Centre for The Digital Future

Prosus

Sehraj Singh

Managing Director
India

Aastha Grover

Director, Corporate Affairs and
Public Policy

BCG

Vipin V

Managing Director and
Partner, Financial Institutions

Tirtha Chatterjee

Partner,
Financial Institutions

Sai Dhanush AV

Project Leader

Srinidhi Vivekanandan

Senior Associate

Healthcare

Dr. Sowmya Swaminathan

Chair, M.S. Swaminathan Research Foundation
Former and first Chief Scientist - WHO
Former, Director General - ICMR

Priyanka Aggarwal

Managing Director & Senior Partner,
Leader Healthcare Practice, India and
South-East Asia, BCG

Kshitij Vijayvargiya

Managing Director & Partner,
Healthcare and Digital
Transformations, BCG

Agriculture

Prof. Ashok Gulati

Padma Shri Awardee
Distinguished Professor-ICRIER
Former Chairman of CACP, Gol

Aparna Bijapurkar

Managing Director & Partner
Public Sector and Social
Impact, BCG

Education

Manit Jain

Former Chair FICCI Arise
Co-founder - I am a Teacher
Founder - Humain Learning

Garima Batra

Managing Director & Partner
Public Sector and Social
Impact, BCG

Manufacturing

Tejpreet Singh Chopra

Founder and CEO - Industry.AI
Chairman and MD - Bharat Light
and Power

Natarajan Sankar

Managing Director & Partner
Industrial Goods
BCG

Nikesh Murjani

Managing Director & Partner
Industrial Goods
BCG

Finance

Vikas Agnihotri

Advisor, Mentor, Angel Investor
Former Managing Director, Google India
Former Operating Partner, Softbank

Yashraj Erande

Global Leader - Fintech
India Leader - Financial Institution,
BCG

Contributors

Amrit Arogya (Healthcare)

Vaidya Rajesh Kotecha

Secretary, Ministry of AYUSH

Abhishek Singh

IAS, 1995, Nagaland | CEO of the India AI Mission; Additional Secretary, Ministry of Electronics and Information Technology (MeitY)

Dr. Ram Sewak Sharma

IAS, 1978, Jharkhand | Former CEO of National Health Authority, Now Distinguished Visiting Professor at IIT Kanpur

Dr. Dinesh Kumar Tyagi

IAS, 1981, Manipur-Tripura | Former Managing Director, CSC egovernance; Now President, Society of Digital Entrepreneurs

Anil Agrawal

IPS, 1988, Uttar Pradesh | Member, Competition Commission of India

Dr. Garima Jain

Sr. Scientist, ICMR

Girish Krishnamurthy

CEO and Managing Director, Tata MD

Vivek Singh

Chief of Health, UNICEF

Siddhartha Bhattacharya

Secretary General, Healthcare Federation of India (NATHEALTH)

Dr. Sandeep Datta

Hony. Assistant Secretary, Indian Medical Association

Anaita Singh

Senior Officer, Digital, Health, and AI, Gates Foundation

Akanksha Tikku

Sr Program Manager, Wadhwani AI

Anshul Khandelwal

Healthstack & Public Technology Expert, Isprt

Arunoday Singh

Founder, O-health

Tathagato Rai Dastidar

Founder, SigTuple

Bhargav Sri Prakash

Founder & CEO, FriendsLearn

Contributors

Amrit Krishi (Agriculture)

Shailendra Tiwari

Co-Founder & CEO,
Fasal

Sunil Khairnar

Founder and Advisor,
Indigram Labs Foundation

Dr. Sudeep Marwaha

Principal Scientist, Division of
APPD, ICAR-CIAE

Vijay Pratap Singh Aditya

Co-founder & Director,
Ekaagon Technologies

Shri Vikas Rastogi

IAS, Additional Chief secretary (Agriculture)
Government of Maharashtra

Nipun Mehrotra

Founder & CEO The Agriculture
Collaboratory (TAC)

Prakash Kumar

CEO, Wadhwani Center for Government
Digital Transformation (WGDT)

J Satyanarayana

Chief Advisor, C4IR India,
World Economic Forum

Hemendra Mathur

Venture Partner Bharat,
Innovation Fund

V Balasubramanian

Chief General Manager, Department for Data
Management, Analytics and Business Intelligence
(DDMABI), NABARD

Santosh K Singh

Partner & Managing Director,
Intellecap Advisory Services Private Limited

Mukul Varshney

Vice President - Corporate Affairs, Media and
Communications, John Deere

Dr. Manpreet Singh

Principal Scientist (FMPE),
Punjab Agricultural University

Dr. R.B. Singh

Former Chancellor,
Central Agricultural University

Nidhi Bhasin

CEO,
Digital Green Trust

Rahul V

Principal,
Absolute

Puneet Jain

Director,
Vegrow

Milan Sharma

Co-Founder & CEO,
Intello Labs

Mayur Gohil

Head of ITCMAARS - ITC Agri
Business Division, ITC

Sanjay Sacheti

Country Head - India Region,
Olam

Contributors

Amrit Vidya (Education)

Dr Shubhashis Gangopadhyay

Managing Trustee, India Development Foundation

Shubhendu Chakravorty

Program Head, Pratham Education Foundation

Prakash Kumar

CEO, Wadhwani Center for Government Digital Transformation (WGDT)

Mr. Shivam Jha

Director, Tata ClassEdge

Ms. Niharika Gaur

Head of philanthropy, Khan Academy India

Dr. Amit Dutta

Director, AICTE

Abhishek Singh

Additional Secretary, MEITY

Mr. Alok Kumar

CEO, NSDC International

Shyam Pradeep

Managing Director, Infusory Future Tech Labs Private Limited

Kanika Sharma

Founder & CEO, Hapchi Private Limited

Rohit Prakash

Co-founder, I Dream Education Private Limited

Deepti Sawhney

CEO & Founder, Mahattattva Educational Advisory Private Limited

Sh. Anandrao V. Patil

Additional Secretary Department of School Education & Literacy

RCM Reddy

MD & CEO, Schoolnet India Ltd & Learnet Skills Ltd

Mamta Saikia

Former CEO, Bharti Airtel Foundation

Anil Mammen

Professor of Practice, TISS and Visiting Faculty, IIM Indore

Subir Shukla

Principal Coordinator, IgnusERG Education Resource

Meeta Sengupta

Independent Expert

Ramkrishnan Balakrishnan

Vice President, Piramal Foundation

Manmohan Singh

Co-founder & CEO, Kaivalya Education Foundation

Prof. Sourabh Paul

Head, Educational Technology Services Centre, IIT Delhi

Swati Ganeti

Managing Director, Masters' Union

Kavish Gadia

Chief Executive Officer, ExcelOne (PISA for Schools) and Founder, Stones2Milestones Group

Ayush Bansal

Founder & CEO iDreamCaree

Raghav Gupta

Head of Education - India & Asia Pacific, OpenAI

Prof. Indu Kumar

Head Digital ICT and National Coordinator, DIKSHA (Digital Infrastructure for Knowledge Sharing), Central Institute of Educational Technology, NCERT

Dr. Rajesh D

Associate Professor
Central Institute of Educational Technology, NCERT

Contributors

Amrit Udyog (Manufacturing)

Anand Yadav

Director,
Mekr Technologies

Animesh Srivastava

SVP – Tech,
Moglix

Aniruddha Banerjee

CoFounder
SwitchOn

Ayushi Sarna

Lead- SME initiative, Center for fourth
Industrial Revolution

Bhuwan Lodha

CEO - AI Division,
Mahindra Group

Debayani Majumdar

FEBI

Dheeraj Tiwari

Director CEO,
Capgrid Solutions

Hariharan N

AVP R&D,
BFW (Bharat Fritz Werner)

Keyur Bhalavat

Co-Founder & CEO
Plutomen

Mamta Abichandani

Director & Head Public Affairs &
Communications, Infineon Technologies

Manoj Yadav

Head of Operations,
Peer Robotics

Dilip Sawhney

Managing Director, Rockwell Foundation

Naveen Kamat

Chief Digital and AI Officer,
Larsen & Toubro

Nikesh Murjani

Managing Director and Partner,
Manufacturing, BCG

Rajesh Reddy

Co-founder & CEO,
Venwiz

Santhoshi Buddhiraju

CEO,
Autocracy Machinery

Contributors

Amrit Niti (Financial Services)

Aishwarya Jaishankar

Co- Founder & COO,
Hyperface

Alok Mittal

Co-founder & MD,
Indifi Technologies Pvt Ltd

Anant Deshpande

Co-founder & COO,
FinBox

Anindya Karmakar

Head - Digital Business, Aditya Birla Sun Life AMC,
Head - Digital & Analytics, Aditya Birla Capital

Hargobind Gupta

Head of Engineering,
Whrrl Fintech Solutions

Himanshu Sahai

EVP, Kotak Bank

Mohit Gopal

COO PayU-CEO-RDP,
PayU

Rajiv Gupta

President, PB Fintech Ltd
(Policy Bazaar and Paisaa Bazaar)

Ramchandran H

City Union Bank Limited

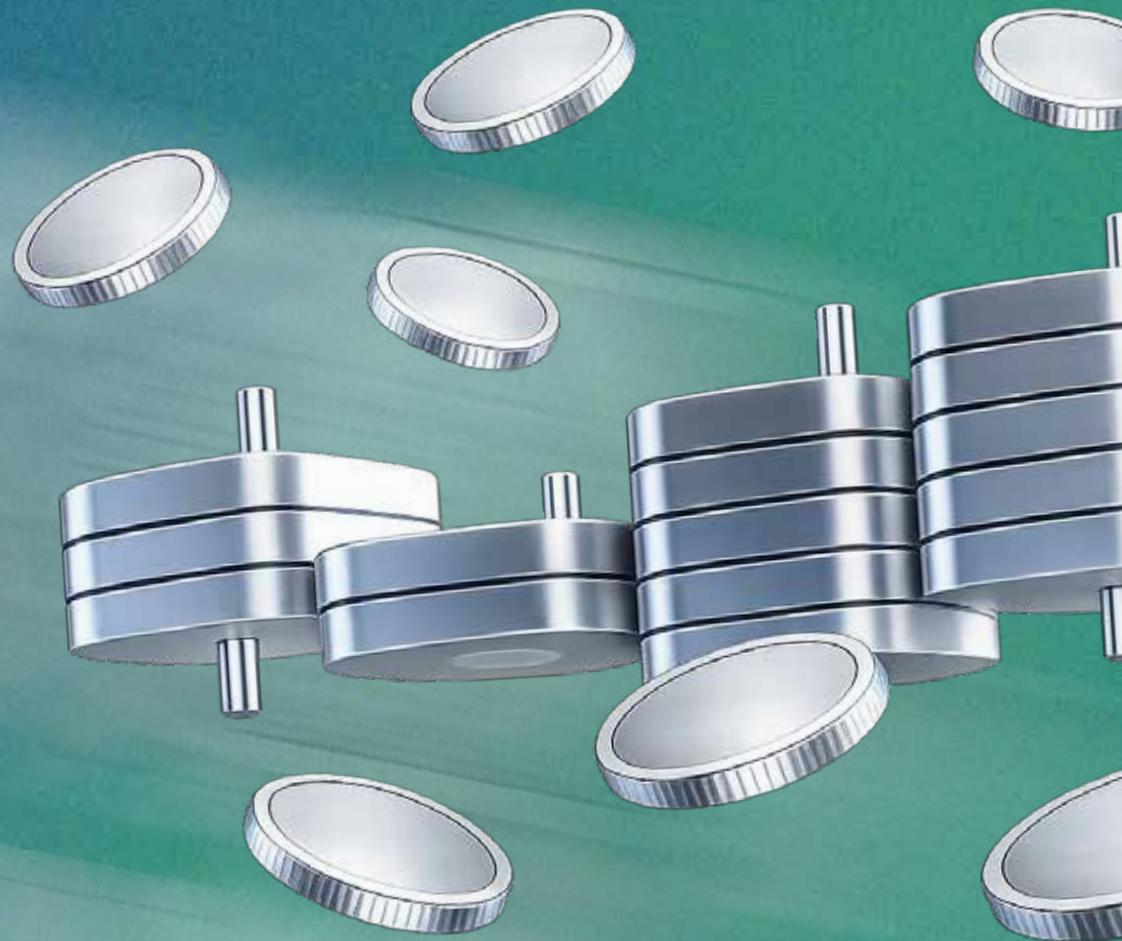
Sameer Garg

EVP, Axis Bank

Shailesh Paul

CEO, Wibmo

Vaibhav Lodha


Co-Founder,
FTCash

Vijayendra Sharma

Head of Digital Banking (Retail), TASC &
Government Banking, CSB Bank

Yashwant Lodha

Co-Founder
PayNearby

*This image is AI generated.
Image generated using ChatGPT*

PROSUS + BCG

INDIAI

इंडियाइ

इंडियाइ एवं
सूचना प्रौद्योगिकी मंत्रालय
MINISTRY OF
ELECTRONICS AND
INFORMATION TECHNOLOGY

सर्वजन द्वितय | सर्वजन युद्धाय
WELFARE FOR ALL | HAPPINESS OF ALL

